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1 Executive Summary

ImageJ is an open-source image analysis tool used for processing scientific images, such as multi-dimensional
microscope images. Its graphical user interface is similar to popular image editing software, such as Photoshop
or GIMP, but tailored to microscopy and biomedical imaging (Schindelin et al., 2015). Many scientific image
processing workflows are enabled by third party plugins built upon ImageJ’s highly extensible Java plugin
API and batch scripts built upon its internal scripting language. The objective of this project is to create a
suite of ImageJ plugins which will automate repetitive ImageJ workflows mostly done manually by our clients,
researchers at the University of Cambridge Department of Clinical Neurosciences. The plugins will be used by
the clients to investigate new methods in gene therapy with potential clinical applications, such as preventing
loss of vision.

Gene therapy is a treatment that can be used to treat genetic disorders and some acquired disorders by
delivering DNA into targeted cells via a vector carrying the DNA or RNA, typically (and in our specific case)
a viral vector. Once the virus enters the cells, the genes carried by the virus are released and can change these
cells’ behaviour (ideally towards a desired outcome).

A time-consuming process in research evaluating the efficacy of viral vectors is image analysis: from microscope
images, researchers have to determine how many cells receive the gene therapy, how much therapy each cell
receives, and also whether the correct type of cells have been targeted by the gene therapy. In an experiment,
cells which should be targeted by the gene therapy (what we call targeted cells) are stained with one colour
(e.g. red) and cells which have uptaken the viral vector (what we call transduced cells) become stained with
another colour (e.g. green). These stains fluoresce under a microscope and researchers can import microscope
images of these cells into ImageJ to perform analysis with the help of ImageJ’s image processing tools.

However, current automated analysis methods to detect and annotate cells are not tailored towards our
clients’ experimental needs (e.g. the particular cell staining techniques used and circular shape of the cells).
Additionally, current ImageJ analysis plugins require the user to manually pre-process images as plugins do
not account for an image having dust/speckles or being too sharp or too blurry. These limitations lead to
inaccurate analyses, so each image must instead be manually analysed: researchers must manually identify
each red and green cell by clicking on them with a computer mouse. With each image containing hundreds of
cells, manual analysis can take tens of minutes per image, with tens to hundreds of images analysed over the
course of a research project, incurring a substantial time drain.

Many of ImageJ’s analysis plugins have not greatly changed since the software’s inception in 1997 (Schneider,
W. S. Rasband, and Eliceiri, 2012), hence with advances in computer vision research over the past two decades,
especially in the field of biomedical imaging, our clients have identified an opportunity to accurately automate
their manual processes. Our project is to develop a suite of ImageJ plugins which apply classical computer
vision techniques to automate the following two workflows that our clients frequently use:

• identifying individual cells of round shape and particular size, allowing for cell populations to be quantified;
and

• determining whether transduced cells overlap with targeted cells, which directly quantifies the efficacy of
a gene therapy experiment.

Our plugins are designed for minimal user interaction, including automation of pre-processing stages described
previously. As a result, the plugins reduce the time spent evaluating researchers’ experiments from tens of
minutes to no more than fifteen seconds per image while matching the level of accuracy of manual human
evaluation. This will allow our clients at the University of Cambridge to analyse results of their gene therapy
experiments on brain and eye tissue much more easily and efficiently. The developed plugins will contribute to
the image analysis process of a research project that aims to determine the best viral vectors to target certain
cell types in the eye.
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2 Introduction

2.1 Background

Fluorescence microscopy is one important part of gene therapy research which enables researchers to evaluate
whether their experiments are effective by ingeniously exploiting microbiological processes: specific proteins can
be chosen which fluoresce under different wavelengths of light and target specific types of cells or parts of cells.
As described in the prior section, by choosing different proteins which fluoresce under different wavelengths,
researchers can infer multiple data points to evaluate their experiments.

Our clients at the University of Cambridge have been performing gene therapy experiments on retinal ganglion
cells (RGCs, the target cells) in mice with the aim of determining the optimal viral vector to transduce target
cells, where viral vectors differ in their ability to be uptaken by cells and efficiency to activate packaged genes.
Our clients are using markers for proteins called RBPMS (Rodriguez, de Sevilla Müller, and Brecha, 2014)
and Brn3a (Dunn, Kamocka, and McDonald, 2011) to identify retinal ganglion cells, which causes these cells
to fluoresce and are shown in images under the red colour channel. The cell body of retinal ganglion cells
contains cytoplasm surrounding a small nucleus; this structure is important for identification of these cells: the
marker for RBPMS stains the entire cell body, including the cytoplasm and nucleus, whereas the marker for
Brn3a only stains the nucleus. A separate protein, green fluorescent protein (GFP), is introduced by the viral
vector, so when a cell is transduced by the vector, the cell also fluoresces, this time under the green colour
channel.

In our client’s experiments, the red channel of an RGB image taken by a microscope shows retinal ganglion
cells, the green channel shows green fluorescent protein which has been uptaken by a cell and occasionally,
a third blue marker (DAPI nucleic marker) is used in some experiments which indiscriminately highlights all
cells in the image. In general, Brn3a, RBPMS and DAPI are examples of visualising cell morphology and GFP
is an example of visualising transduction.

Shape is also a factor in identifying retinal ganglion cells in images: images from experiments often have
overlapping morphologies such as axons and dendrites, which appear as bright streaks in an image. Retinal
ganglion cells appear in our clients’ images from experiments with near-circular shape and similar size, making
them easy to distinguish from axons and dendrites.

Figure 1: The left two images show the red and green channels of the same image of retinal ganglion cells, the
image on the right shows both channels together. The yellow circles identify cells that are both red and green,
hence they are retinal ganglion cells that have been transduced as they are also expressing the GFP.

The above images can be analysed using ImageJ by: counting the number of cells in the red, green and (if
applicable) blue channels; comparing the number of cells which overlap between the red and green channels;
and quantifying the brightness of each cell in the green channel. The following inferences can be made from
this data:

• the number of retinal ganglion cells which assimilated the vector is determined by the number of
overlapping red and green cells;
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• effectiveness of the viral vector targeting depends on comparing the number from the prior bullet point
against the total number of retinal ganglion cells from the red channel;

• functional outcome of the viral vector depends on the fluorescent intensity of the green channel; and

• cell specificity, where cells which have not been targeted assimilate the vector, are determined by counting
the number of green-stained cells which do not overlap red-stained cells.

Third party ImageJ plugins have attempted to achieve the above analyses with minimal manual user interaction,
such as ITCN (Image-Based Tool for Counting Nuclei) developed in UC Santa Barbara, and EzColocalization
(Stauffer, Sheng, and Lim, 2018). However, these plugins are only semi-automated, requiring the user to
manually pre-process the image beforehand (e.g., adjusting brightness and contrast, correcting for uneven
background illumination, etc). For ITCN in particular, our clients have reported inaccurate results, where
ITCN overcounts the number of cells.

Our clients have also previously used an ImageJ macro to determine colocalization between two colours
(Nieuwenhuis, 2019) with brain tissue images, with NeuN-stained neurons’ fluorescence appearing under the
red channel and eGFP (a similar protein to GFP) (Zhang, Gurtu, and Kain, 1996) fluorescence appearing
under the green channel. However, this macro is still semi-automated, still requiring manual measurements
to be adjusted for each experiment, such as image processing (i.e. thresholding) parameters and the pixel
dimensions of the area of interest. Hence, batch processing a set of images is not possible.

2.2 Objectives

The overall objective of our project is to develop a suite of ImageJ plugins which allow automated analysis
of microscope images using classical computer vision techniques for a series of aims given by our client. The
plugins must take in either a single image and display results within ImageJ, or batch process a selection of
images and save output to a format which can be read by spreadsheet software (such as CSV). A test dataset
of input images, microscope images of tissue, is provided for all aims.

The project consists of two main aims. Aim 1 is to create a plugin which automates counting and highlighting
of individual cells in an image in order to quantify cell populations. Aim 2 is to measure the colocalization
between a target cell colour channel and transduced cell channel in order to make the inferences detailed in
the previous section. User experience is a focus for both aims: the plugins must require the minimal user
interaction for our clients’ experiments on retinal ganglion cells but still maintain configurability for general
use cases.

2.2.1 Aim 1 (Simple Cell Counter)

The objective of this aim is to count and highlight individual cells, where an image needs to be pre-processed
with minimal human interaction (e.g, removing artefacts such as dust and bubbles) so that computer vision
techniques can be accurately applied, and key features such as shape of the cells in our clients’ images need to be
taken into account. The dataset provided by the client for this aim uses RBPMS staining; with greater surface
area of cells stained, there is higher chance of overlap between cells. This aim exists partly to onboard us onto
later aims: by overcoming cell overlap in this aim, greater accuracy is expected when dealing with Brn3a-stained
images in later aims, which would have lower overlap rates as nuclei have smaller surface area.

2.2.2 Aim 2 (Simple Colocalization)

This aim forms the main goal of this project, measuring colocalization between multiple channels, tailored
to the clients’ use case of their experiments on retinal ganglion cells. The dataset for this aim is taken
from experiments with Brn3a-stained retinal ganglion cells. The required outputs in order to quantify the
colocalization are as follows:

• the total number of target cells;

• the total number of target cells overlapping transduced cells;

• (if a third channel is used) the number of cells which overlap all three channels; and

• quantification (median intensity) of each transduced cell.
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2.3 Contributions

We have been able to familiarise ourselves with ImageJ and developed a suite of plugins which achieve the
above aims: Simple Cell Counter, Simple Colocalization, and Simple Batch. In creating these plugins, we have
overcome both technical and user-facing challenges.

Overall, we achieved accurate and reliable results in both aims and have created a significant reduction in
analysis time for our clients. Our Evaluation section discusses our results in further detail. Additionally,
we meet the objective of providing useful, detailed output in both ImageJ’s GUI and spreadsheet-compatible
format (CSV).

Simple Cell Counter achieves the goals of Aim 1 described in the prior section. On a technical level, we used
this first aim to familiarise ourselves with the strengths and limitations of ImageJ’s API, and to investigate
several methods of applying computer vision techniques (i.e. image segmentation) which would come in use in
all aims. From our technical investigations, we then designed a user-friendly interface and automated image
analysis pipeline around the constraints of ImageJ’s GUI API. Both user experience and accuracy received
positive client feedback, with the plugin automating the time-consuming task of counting individual cells into
one which takes less than a second.

Simple Colocalization achieves the goals of Aim 2, identifying and quantifying the amount of overlap of cells
fluorescing in different colour channels. This was a more involved task: using our implementation of the first aim
and undertaking significant research, we implemented a pipeline which gave fast, accurate analyses, providing
data both summarising the overall image and per cell. We also integrated extensive user feedback for this plugin,
given the focus of ensuring output data would be useful for evaluating gene therapy experiments.

Simple Batch achieves the user requirement of running the above two plugins on a large quantity of images,
where the plugin can batch process a folder containing more than one input images. This supports a wide
variety of image formats used by our clients, including LIF and TIFF formats. The output file is simple to
read and allows our clients to easily distinguish the output for each file.

Across these plugins, we overcame several other user experience challenges, which had either technical or design
complexities, including:

• requiring minimal manual tuning while maintaining configurability, where we performed significant
research to distill each stage of our image analysis pipelines into the least number of parameters, and
provided sensible defaults to reduce the situations where manual tuning would be necessary;

• taking advantage of ImageJ’s plugin distribution system to make the plugin easy to install (discussed
further in the Deployment section).

We expect that our application will be useful to our clients in their upcoming research and hope that they will
find good use in the wider biological community.

2.3.1 Extensions

There are some elements of our work that were not included in the initial specification provided by the client,
but we chose to complete these additional tasks in order to improve the quality of our product. The following
are extensions to the brief which we completed:

• Accuracy in non-RGC use cases - For Aim 1 in particular, we have ensured our plugin runs accurately
on images provided for other use cases. We were able to tweak our image analysis pipeline so that the
plugin performed well on both images of retinal ganglion cells and NeuN-stained brain tissue, which was
outside the scope of our project.

• Detailed colocalization output - In addition to displaying the required outputs in our original aims,
we worked with the client to display more data which would be useful to their experiments, such as a
calculation of the integrated density value of every transduced cell.

• XML output - Although the client only requested a CSV output format, we decided to also provide XML
output in order to widen the potential usage of our plugin as providing this additional format could be
beneficial to other researchers. We chose XML for this purpose due to its ability to openly represent
structured data.
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3 Design and Implementation

3.1 Overview

We have created a suite of three ImageJ plugins: one to fulfill Aim 1 (Simple Cell Counter), one for Aim 2
(Simple Colocalization) and one for batch processing images on either of the two prior plugins (Simple Batch).
The division of our aims into these three separate plugins is intentional: many of the key design choices in
the project are based on the constraints and conventions of the ImageJ plugin API. In this particular case, we
followed convention to create separate plugins due to how distinct each plugin’s inputs and outputs are.

ImageJ supports a wide variety of languages for its API, including Java and Python (Jython), all of which
would produce a JAR plugin file for users to load into ImageJ. We decided to use Kotlin for our project, a
statically-typed programming language designed to fully inter-operate with Java: with ImageJ being developed
in Java, its Java API documentation is much more thorough compared to its other supported languages, and
with Kotlin’s static typing, conciseness and addition of powerful functional programming constructs (such as
higher order functions) would increase our developer productivity.

We also focused on good software engineering practices, particularly structuring our codebase around ImageJ’s
API. Our code is split into an abstraction provided by the ImageJ API: services and commands. Services allow
us to write methods intended to be re-used across images, while commands are designed to be used for one-off
operations. As a result, our image segmentation steps for both plugins are encapsulated within services, while
distinct code to handle the plugins’ graphical user interfaces are provided by commands. This pattern reduces
the amount of duplicated code in our codebase and increases its maintainability.

3.1.1 User Experience

The overall challenge on the user-facing side of all of our plugins was to provide an easy to use plugin for
our clients which required minimum interaction for their specific use case, yet still allowed them to change
parameters to suit other use cases.

For our UI we chose to use the ImageJ GUI API as opposed to implementing our own with, for example, Swing
GUI. This was to ensure we developed a UI with a similar style and convention to other ImageJ plugins, reducing
the learning curve for ImageJ users. However, the ImageJ API has limited functionality in its straight-forward
declarative way of displaying windows with input boxes and buttons. Despite this constraint, we were able
to develop user interfaces that were simple, consistent with one another, and consistent with other ImageJ
plugins. This allows for a straightforward and friendly user experience.

In order to avoid an overcomplicated UI, we had to decide which image processing parameters would be
configurable by the user: as discussed in later sections, achieving our tasks require many image processing
steps, each of which require several numeric parameters. We spent a considerable amount of research time
deciding: which parameters could be constant and hidden as they would work for most, if not all, expected input
images; which parameters could be set to a default setting, optimised for our client’s specific ongoing research
images; and which parameters needed to be adjusted every time due to variations in input images.

We were able to make the advanced parameters optional due to our extensive research in finding default
parameter values for our test images, leaving one numeric parameter for Simple Cell Counter and two numeric
parameters for Simple Colocalization for the user to specify or leave as default. Six additional, advanced
parameters are configurable by the user in a dialog (Figure 2b) shown only if the user checks a ‘Manually
Tune Pre-processing Parameters?’ checkbox, used for images which differ from the research images we have
targeted.

Specific user interfaces, including descriptions of parameters for each plugin, are explained in detail in their
respective sections, 3.2.1 (Simple Cell Counter), 3.3.1 (Simple Colocalization) and 3.4.1 (Simple Batch).
Overall, we have aimed for uniformity between each plugin, with Simple Cell Counter and Simple Colocalization
having the following overall steps within ImageJ:

1. Open an image

2. Open the plugin by selecting Plugins −→ Simple Cells in the ImageJ toolbar
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3. Configure essential parameters (output method, basic image processing parameters, etc.)

4. (Optional) Configure advanced parameters (primarily for image pre-processing, listed in Appendix A.6)

5. Display output in ImageJ or save to output file (CSV/XML)

We also aim for uniformity and conventional behaviour in line with other ImageJ plugins. For example, both,
Simple Cell Counter and Simple Colocalization follow convention by only operating on images which are already
open in ImageJ instead of manually opening a file window.

Different user interface approaches and flows were also considered: one alternative would have been to have all
of the parameters in the single menu, but this would over-complicated our clients’ typical usage and overwhelm
them with a steep learning curve. Likewise, we considered hiding advanced parameters under an expandable
accordion menu as opposed to opening a new dialog, but this would not have been possible due to limitations
in the ImageJ GUI API. Given these considerations, our solution balances well the need for minimal user
interaction with high configurability.

3.1.2 Backend Image Processing

Implementing the functionality behind the user interface requires explicit handling of the ImageJ API’s
representation of images, along with the application of classical computer vision techniques.

In fluorescence microscopy, microscope images contain many characteristics not present in standard image file
formats (such as PNGs and TIFFs). Although ImageJ does support standard image formats with RGB colour
channels and these formats are commonly used by our clients, our clients also frequently export microscope
images in the Leica Image File (LIF) container format. As a result, our plugins support all of these file
formats. LIF files add complexity to our backend image processing stages as LIF files contain features such as
the following when imported into ImageJ:

• images can have multiple channels, such as a fourth colour channel for far-red wavelengths;

• the container contains one or more series of images (as opposed to PNGs and TIFFs which can only
contain one series), where each series represents a disjoint section of the cell plate under the microscope,
and consecutive series taken can usually be stitched into a larger, single image at the expense of processing
time; and

• every series can contain several images which are collectively known as a Z-stack, representing the
microscope taking images (slices) at different depths of the cell plate, therefore capturing image data in
three dimensions.

With our clients’ input file formats in mind, backend image processing for our plugins consists of the following
stages:

1. image extraction, retrieving the necessary channel(s), series and slice from the input image;

2. image pre-processing, cleaning the targeted image channel(s) to improve the accuracy of image segmentation;

3. image segmentation, separating overlapping cells and identifying individual cells from a pre-processed
image; and

4. analysis, processing each individual cell and returning the required output(s).

In both aims, the pre-processing and segmentation stages presented the greatest technical challenges: the
accuracy of plugin analysis and output heavily depends on accurate cell identification. The following sections
cover the different techniques we have investigated in order to arrive at our current solution.
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3.2 Simple Cell Counter

3.2.1 User Experience

(a) Initial menu (b) Pre-processing Parameter Menu

Figure 2: Menu screens for Simple Cell Counter

Simple Cell Counter has a simple user interface, hiding the complexity of the backend image processing stages.
The initial menu, shown in Figure 2a consists of only the essential parameters. In this case this includes the
‘Largest Cell Diameter’ specified in pixels. This is clear to the user both what the parameter means and how
it is measured. The other essential parameter(s) are for output where each option is presented clearly, and it
is emphasised that if saving as a file then an output file location can be specified. Additional user flows for
Simple Cell Counter are presented in B.1.

We provide the option to manually tune the other parameters with a clear checkbox at the top. If the user
does specify to manually tune parameters then the pre-processing menu, shown in Figure 2b, appears.

Figure 3: Output by Simple Cell Counter of ROIs on the original image

For output, we provide the option of an ImageJ table for convenience as shown in Figure 4a, as well as the
option to save as CSV/XML files which enables further data processing. Figure 4b shows the result of opening
our resulting CSV in Excel. Note that regardless of the output format specified, the identified cells will be
added as ROIs to the ROI manager of ImageJ and will appear as overlays on the image, as shown in Figure
3.

3.2.2 Image Extraction

Before any image operations can take place, the opened ImageJ image may contain multiple slices. If this is
the case, the only image extraction step required in this plugin is to flatten the three-dimensional Z-stack into
a standard two dimension image. To do so, we use ImageJ’s internal Z-projection functionality and following
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(a) ImageJ table (b) CSV output opened in Excel

Figure 4: Output for Simple Cell Counter

our client’s specification from their manual workflow, we take the maximum intensity projection of each pixel,
which sets the pixel at a coordinate to the maximum pixel value across each slice in the Z-stack.

3.2.3 Pre-Processing: Thresholding

After the extraction phase, the plugin performs several pre-processing steps on the image to prepare it for
segmentation. Pre-processing refers to the transformation of an extracted image into an image consisting of
white (non-segmented) cells on a black background. This then allows the software to more accurately segment
and identify individual cells. Pre-processing and segmentation are very closely related and a flowchart of the
entire pipeline is shown in Figure 5.

Figure 5: Default segmentation pipeline for the transduction channel with axons

From our client’s suggestions and ImageJ image segmentation instructions for general use cases, it was clear
that the first pre-processing step needed was to threshold the image. Thresholding converts an image to a
binarised (black and white) image, where white represents parts of the image that are considered to be in
the foreground (i.e. cells), and black represents the background. This categorisation is based on the intensity
of the pixels: bright pixels are likely to be cells; dark pixels are likely to be the background. The ImageJ
API has several thresholding methods available, hence we opted to use the API. As the API only takes in
greyscale images, we convert the input image to greyscale before thresholding it at no cost to accuracy or
performance.

At a high level, we had to choose between local and global thresholding algorithms. Thresholding algorithms
work by determining a threshold value at which a pixel would be considered either in the foreground or
background based on its value by evaluating the pixel intensities across an area of an image. Global algorithms
evaluate the threshold based on intensities across the entire image, while local algorithms evaluate the threshold
based on the area surrounding each pixel, set by a radius parameter.
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Our plugin initially used global thresholding, however this did not perform well with our test images as more
faint cells and clustered groups of brighter cells were not being placed in the foreground layer. This was a
result of the background being unevenly illuminated, so the global threshold was too high for darker sections
of the image and too low for brighter ones. As a result, we settled for local thresholding, which was designed
to support changes in image brightness.

At a low-level, we had to choose the specific local thresholding algorithm out of the many offered by ImageJ’s
API (ImageJ Auto Local Threshold Documentation 2019). We performed qualitative assessments based upon
our visual expectations for a well-thresholded image on our clients’ test images to determine the optimal
algorithm, and found that the Otsu, Bernsen and Niblack algorithms produced near-equally-optimal results.
Since our goal is to require the least amount of manual configuration from our clients, we determined that
Otsu was the best local thresholding algorithm to use as it did not require any additional parameters, unlike
Niblack which takes a k-value and and offset parameter, and Bernsen which takes a contrast threshold as a
parameter. Our clients reinforced our decision, expressing a preference for Otsu’s algorithm due to positive
results using it in the past.

3.2.4 Pre-Processing: Anomaly Removal

Early investigation showed that thresholding by itself was insufficient: certain anomalies were present which
were causing inaccuracies, which we resolved by implementing techniques such as background subtraction,
median filtering and ridge detection.

The first issue we encountered was that some pixels were being classified as a cell due to uneven background
illumination causing speckles to appear in the image after thresholding. We found that our clients overcame
this by manually performing multiple background intensity measurements across the image and reducing the
brightness of the entire image by the average of these measurements before thresholding (Nieuwenhuis, 2019).
However, we needed to automate the process, settling on a combination of two techniques. Firstly, before
the thresholding stage, we use a rolling ball background subtraction filter (Sternberg, 1983) in ImageJ’s API,
which reduces background intensity locally over a radius which we set to the expected radius of the largest cell.
Secondly, after the thresholding stage, any remaining speckles are removed by applying a median filter from
ImageJ’s despeckling tool (Ferreira and W. Rasband, 2012). This combination heavily reduced the number of
false positives with our test images.

Another issue we encountered was that many of our input images contain axons and dendrites which become
erroneously counted as cells in the segmentation stage. To prevent this, following the median filter stage, we
added a stage responsible for detecting and removing axons and dendrites. As these features are typically
linear in nature, we were able to use a ridge detection plugin (Thorsten Wagner, 2017), which implements
and extends a ridge detection algorithm (Steger, 1998), to select the axons and dendrites. As the image at
this stage is black and white, we are able to remove the selected features by painting over them in black, thus
preventing them from being counted as cells.

One last issue we noticed was that the the earlier local thresholding stage was overly sensitive, separating
individual cell bodies into smaller ones if the pixel intensities within their boundaries had a large variance. By
drawing inspiration from (Korath, Abbas, and Romagnoli, 2008) and (Bankhead, 2020), we merge erroneously
separated cells by applying a gaussian blur (pythonvision.org, 2019), achieving the effect of merging these cells
back together, followed by performing a global threshold to remove the blur and recover distinct outlines of
cells.

To ensure that these pre-processing steps consistently improved our count when included in our pre-processing
pipeline, we performed an extensive investigation which allowed us to evaluate these pre-processing steps and
obtain default parameter values our client’s research images, which can be found in Appendix D.

3.2.5 Image Segmentation

Once image extraction and pre-processing is complete, the image is at a stage where segmentation can accurately
be performed, where operations are performed on the image to separate overlapping cells into cells with distinct
outlines. We investigated several segmentation methods, settling on the classical watershed segmentation
algorithm (Beucher and Lantuéjoul, 1979, K V et al., 2016), widely used in both generic and fluorescence
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microscopy computer vision workflows, which performed well given the effectiveness of our prior pre-processing
stages in clearly separating individual cells.

Prior to choosing watershed as our segmentation algorithm, we spent a considerable amount of time investigating
methods tailored more towards our image features. One example which closely aligned with our technical
specifications was Molnar et al., 2016, tailored to fluorescent, stained cell nuclei, using an active contour model
which favours our circular shapes while accounting for slight variations. However, the paper required the pixel
intensity of regions to increase proportional to density so that overlapping regions are brighter; this essential
feature was not present in our input images, hence this paper’s technique could not be used. Likewise, Korath,
Abbas, and Romagnoli, 2008’s ‘dip lining’ technique claimed to be more effective than watershed segmentation,
however, this technique depended on data being collected before our pre-processing and anomaly removal stages,
and the amount of cell overlap and variation in background intensity rendered the dip lining technique to be
ineffective.

3.2.6 Analysis

With cells separated in the image by the prior pages, the analysis stage involves retrieving cells from the
segmented image and taking the count of cells. Here, we use a tool already provided in ImageJ, the Analyze
Particles tool (ImageJ Analyze Particles Documentation 2019), used commonly in ImageJ cell analysis workflows.
This tool identifies regions of interest (ROIs) based on radius and circularity parameters and saves each region
of interest in ImageJ’s ROI Manager. The effectiveness of the tool in identifying cells in the image depends on
the quality of segmentation: since we have achieved a well-segmented image, we were able to use this tool for
efficient cell detection.

For output, the cell count output is simply obtained from the ROI Manager class, either displaying the count
in the user interface or saving to a file.

3.3 Simple Colocalization

3.3.1 User Experience

We intentionally designed Simple Colocalization to be clear and consistent with Simple Cell Counter. The
initial configuration menu shown in Figure 6 contains fields to select the target, transduced channels and (if
appropriate) the channel for all cells. By our client’s suggestion, the user interface calls the target layer ‘Cell
Morphology Channel 1’ and the all cells layer ‘Cell Morphology Channel 2’ in order to make the terminology
more generic for wider use cases.

Figure 6: Initial menu screen for Simple Colocalization

10



As is the case with Simple Cell Counter, we provide the same checkbox offering the tuning of pre-processing
parameters which, if checked, leads to the menu shown in Figure 2b. Using the same menu reinforces the
consistency within our set of plugins and makes it easier for users to become familiar.

Figure 7: ImageJ table

The table output (Figure 7) provides both a summary and analysis of each colocalized cell. Regardless of which
output type is chosen, the regions of interests representing identified transduced cells (that were targeted) are
added to the ROI manager and visible. This is shown in Figure 8.

Figure 8: Output by Simple Colocalization of ROIs on the (Z-projected) original image

3.3.2 Image Extraction

As with Simple Cell Counter, input colocalization images may also have multiple slices, hence we again take
the maximum intensity projection of each pixel to flatten the Z-stack. Additionally, Simple Colocalization
involves the processing of multiple channels, hence the image is split into colour channels and the relevant ones
are retrieved based on the channel numbers specified by the user in the configuration menu.

3.3.3 Image Pre-Processing and Segmentation

Simple Colocalization involves the same aim of Simple Cell Counter of identifying individual cells from a
channel. With the need to identify individual cells across the target, transduced and all cells channels, the
same pre-processing and segmentation pipeline as Simple Cell Counter is separately applied on each of these
three channels.

There is one additional stage after the cell identification stage for the transduced channel which is called
intensity filtering. This was added because few cells may fluoresce in the transduced layer due to ambient light
without actually being transduced. Here, the median intensity for each cell is retrieved and only cells with
the top specified percentage of values is kept, reducing the number of false positives in the later colocalization
analysis stage. This parameter is selected so that very few cells are removed from the list of transduced cells
as prior pre-processing steps also reduce the occurrences of these false positives.
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3.3.4 Analysis

In order to meet the goals of Aim 2 (Simple Colocalization), once individual cells across channels are accurately
identified, we first apply an algorithm to identify cell colocalization across two channels (such as the target
and transduced channels); the overarching algorithm is presented in Algorithm 1.

Algorithm 1: Naive Colocalization

// threshold is the minimum percentage of overlapping pixels for a cell to be

considered colocalized.

threshold ← 0.95
colocalizedCells ← initialize empty list
for transducedCell in transducedCells do

for targetedCell in targetedCells do
overlap ← size of intersection of pixel coordinates for transducedCell and targetedCell
total ← size of pixel coordinates for transducedCell
if (overlap / total) > threshold then

append(colocalizedCells, transducedCell)
end

end

end
return colocalizedCells

ImageJ’s API allows the required data for this algorithm to be retrieved easily: each cell is stored in an instance
of ImageJ’s ROI (region of interest) class, which contains a set of Points storing the coordinates of each pixel
belonging to the region of interest. In order to reduce the inter-dependence of our codebase on ImageJ’s API
and to increase testability, we use the adapter pattern, mapping each region of interest into our own lightweight
data class representing a set of pixel coordinates, and perform the algorithm on our own internal class.

During the implementation stage, we discovered a challenge with the above algorithm which had to be overcome:
the time complexity of this algorithm is cubic, with polynomial time set difference having to be performed on
the pixels of every pair of transduced and targeted cells. This caused the naive algorithm to take up to thirty
minutes to run on our images, as our images have dimensions in the thousands of pixels and contain hundreds
of cells, with each cell consisting of tens to hundreds of pixels.

Our initial attempt at increasing the performance of this algorithm was to replace the polynomial time technique
of comparing the amount of pixel overlap between two cells with a constant time technique: instead, the
coordinate centres of every cell would be pre-processed and a pair of cells would be considered as colocalised
if the distances between the centres fell below a particular threshold distance. However, this solution did not
work well for our test images: the threshold was either too small, causing too many false negatives (i.e., cells
which should have been reported as colocalised were not), or the threshold was either too large, causing too
many false positives given the presence of smaller than average cells which were close to another cell but not
overlapping.

Instead, the optimisation we made was to keep the technique of comparing pixel overlap between a pair of
cells and to reduce the search space of targeted cells. Only target cells neighbouring a transduced cell would
be compared against, as opposed to unnecessarily comparing against target cells which would be nowhere near
the transduced cell in the image. The heuristic we used to achieve this was to divide the image into squares
of fifty by fifty pixels (buckets) and only consider target cells which share buckets with the transduced cell.
By implementing functions which map between the coordinates of a pixel and the indices of the bucket which
contains the pixel, we can create a map from each bucket to a list of target cells which contain at least one
pixel which falls under the bucket. Then, instead of looping through all target cells in the algorithm above,
only target cells whose pixels fall within the transduced cell’s buckets need to be compared against. This is
shown in Algorithm 2.

With this improved algorithm, the pre-processing performed means that for every transduced cell, comparisons
would only need to be made against at most ten targeted cells, as opposed to hundreds of targeted cells. This led
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to the time taken for colocalization to reduce from fifteen minutes to less than five seconds on our test images,
meeting the requirement that colocalization had to be performed quickly without loss of accuracy.

We use this algorithm for analysis and output in two ways: firstly, once the colocalised target and transduced
cells are identified, the pixel colour values for each colocalised transduced cell is processed and the relevant
pixel values (as shown above in the user flow); secondly, if the user states that the image has a channel which
marks all cells on a plate, the colocalization between this channel and the prior two channels is analysed using
the same algorithm and the total number of cells overlapping across all three channels is also returned to the
user.

Algorithm 2: Bucketed Colocalization

// buckets is a two-dimensional array, where buckets[0][3] corresponds to the

top-left coordinates of the bucket in the input image, (0 * 50, 3 * 50).

buckets[0][3] contains a hash set of all targeted cells which has a pixel in this

square.

buckets ← initialise two-dimensional array of hash sets corresponding to fifty-by-fifty pixel squares of
the input image

for targetedCell in targetedCells do
for pixel in targetedCell.pixels do

add targetedCell to the bucket corresponding to the pixel ’s coordinates
end

end

threshold ← 0.95
colocalizedCells ← initialize empty list
for transducedCell in transducedCells do

transducedBuckets ← get list of bucket indices which transducedCell ’s pixels fall within
neighbouringTargetedCells ← initialize list
for transducedBucket in transducedBuckets do

append(neighbouringTargetCells, bucket[transducedBucket.i][transducedBucket.j])
end
for targetedCell in neighbouringTargetedCells do

. . . // for loop unchanged from previous algorithm

end

end
return colocalizedCells

3.4 Simple Batch

3.4.1 User Experience

Simple Batch meets the user need of running Simple Cell Counter and Simple Colocalization either on multiple
files, or files with multiple series, with minimal user interaction. In general, ImageJ convention is to implement
file batching as a macro, a script that uses ImageJ’s own macro language (ImageJ Macro Language 2019),
however, since a macro does not support user interaction with a GUI or the ability to interface with our
existing codebase, we decided to implement this as a plugin, with user experience in mind. We kept the user
interface, shown in Figure 9, for the Simple Batch plugin consistent with the previous two plugins so that users
would be familiar with the interface, thus improving the user experience.

The output for Simple Batch running Simple Cell Counter (Figure 10a) is consistent in structure with the
output for Simple Cell Counter (Figure 4b, enforcing consistency and familiarity for the user. However, the
output from running Simple Batch on Simple Colocalization (Figure 10b) is intentionally not consistent with
the output of Simple Colocalization on one image. This is because the output for one image includes per-cell
quantification of intensities but this is omitted from the batch output as each row has to instead represent a
file and it is not possible to include a third dimension in CSVs.
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Figure 9: Menu for Simple Batch

(a) Batch Cell Counter CSV
output opened in Excel

(b) Batch Colocalization CSV output opened in
Excel

Figure 10: Output for Simple Colocalization

3.4.2 Implementation

When planning the implementation of this plugin there were several core challenges we faced which influenced
the decision between plugin and macro briefly discussed above. The main challenges we had to overcome
were:

• handling multiple file-types, including some which ImageJ alone can’t open;

• how to make effective use of the Simple Cell Counter and Simple Colocalization service plugins, applying
good software engineering principles; and

• the best way to collate the input from the plugins after running multiple times.

Unlike prior plugins, input images are not already opened, hence file handling needed to be implemented. In
particular, ImageJ’s original distribution does not handle proprietary image formats such as LIF files. In order
to deal with this caveat, we pass the responsibility of file handling to the third party Bio-Formats plugin instead
of re-implementing its complex file handling functionality ourselves and require the user to already have this
plugin installed. File handling then becomes simple, looping through the contents of a folder recursively.
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In order to batch process images using plugins we had already implemented, we wrapped the existing Simple
Cell Counter and Simple Colocalization plugins in new BatchableCellCounter and BatchableColocalizer

classes (see UML diagram in Appendix C). We then created a command plugin class, SimpleBatch, as the
interface to this functionality. This structure means that we do not need to duplicate code, especially given we
implemented ImageJ’s command and service plugin abstraction which encourages code re-use.

Our clients requested that we provide the output of the batch plugins into a single CSV file, hence we had
to collate the results for each run of the single-run plugins into a single file. We had already created output
classes for the previous two plugins, so with the flexibility we had from developing Simple Batch as a plugin
instead of a macro, we simply modified these output classes to be compatible with both single-run and batch
contexts in order to achieve our goal.

3.5 Deployment

Plugins in ImageJ are distributed as JAR files. While it would minimally suffice to provide a simple download
link to this file, or require the user to compile it from source, ImageJ introduces the concept of ‘update sites’
as the recommended way for ImageJ plugins to be distributed - streamlining the process of plugin installation
and usage. The latest version of a plugin, or package of plugins, are uploaded to the developer’s update site.
End-users can choose to enable specific update sites for plugins that they wish to use, which are managed by
ImageJ’s updater which manages updates and resolves dependencies. Our suite of plugins are distributed on
the https://sites.imagej.net/Sonjoonho/ update site. The latest version of our master branch is built,
tested, and uploaded to the update site on each new release, forming our continuous integration and deployment
pipeline - ensuring that our users will always have the latest version of the plugin.

4 Evaluation

4.1 Performance

4.1.1 Aim 1 (Simple Cell Counter)
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Figure 11: Linear regression plots of manual counts vs. plugin counts

In order to quantitatively assess the performance of our cell counting plugin, we benchmarked its performance
against manual counts, collected by members of the team (non-experts). For comparison, the same tests were
run using a third-party plugin called ITCN (see Background). By doing this, we are able to statistically
demonstrate that our work improves on previous methods. The full analysis, including methodology and
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exploratory data analysis can be found in the project repository under notebooks/simple cell counter.ipynb.
The dataset used in this analysis consists of nine images of RBPMS stained brain tissue. These comprise the
first three series of image sets 22.lif, 33.lif, 49.lif. We will use the notation (Image Set, Series) to
refer to these images.

From the manual and automated counts, we can perform a simple linear regression analysis to quantify the
performance of each of the plugins. If a plugin works perfectly, we would expect the computed counts to match
the manual counts exactly, and for the data points to lie on a straight line y = x. Therefore, we can measure
the deviation from this line to assess accuracy. Visually, we can see the differences between the two models by
plotting them and comparing their errors against a reference line, as shown in Figure 11. Each point represents
an image, the solid line is the regression fit, and the band lines show the 95% confidence interval generated for
the estimate. Immediately, we can see that Simple Cell Counter has a better fit to the reference line, and has
a consistently smaller error. Some notable points are (22, 1) and (33, 1) for which ITCN performs poorly,
while Simple Cell Counter gives a remarkably good result for (22, 1).

To analyse these numerically, we first need to determine whether or not the difference between the two linear
regression models is statistically significant. This can be done by performing a t-test on the regression of Simple
Cell Counter and ITCN. The regression line can be expressed as

Y = β0 + β1X

where B0 is a constant and B1 is the slope. From this, we can formulate the hypotheses

H0 : B1 = 0

H1 : B1 6= 0

The null hypothesis states that the slope is equal to zero, and the alternative hypothesis states that the slope is
not equal to zero. We take the significance level α = 0.05. This yields a p-value of 0.117. Since p > 0.05 we do
not have enough evidence at 5% significance level to reject the null hypothesis. Hence, we can say that there
is a statistically significant difference between the performances of Simple Cell Counter and ITCN.

Plugin Regression Standard Error p-value

Simple Cell Counter y = 0.692x+ 259.067 0.12 0.00068
ITCN y = 0.648x+ 289.15 0.263 0.04323

Table 1: Results of linear regression analysis for each plugin
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Figure 12: Box plot of time taken for manual vs. automated counts
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An important aspect to the usability and convenience of using an ImageJ plugin is the time it takes to run.
Cell counting is a tedious process so reducing this time was one of our core goals. In Figure 12, the rectangle
represents the second and third quartiles, the middle line is the median, and the whiskers show 1.5 IQR. Outlier
points are plotted individually. By plotting the time to take manual counts, we can see that it took as long as
20 minutes to count a single image. ITCN runs in less than 15 seconds, and Simple Cell Counter in under a
single second, opening the door to processing large batches of images in a short amount of time.

4.1.2 Aim 2 (Simple Colocalization)

We followed a similar approach of comparing manually collected counts against those computed by the plugin
when evaluating the colocalization component. In addition to just looking at the counts, we also evaluated
how accurately the plugin measured GFP intensity in these cells. The full analysis, including methodology,
can be found in the project repository under notebooks/simple_colocalization.ipynb. The dataset used
in this analysis consists of six images of retinal tissue stained with Brn3A and GFP. These differ to the images
used in the analysis of Simple Cell Counter in that they consist of multiple colour channels and Z-slices. They
comprise the first two series of image sets 19.01.15.lif, 19.01.24.lif, 19.04.09.lif, and we will use the
same (Image Set, Series) notation to refer to them.

Unlike the analysis for Simple Cell Counter, we opted not to do a direct comparison of counts to another plugin.
The primary reason for this is that it would be difficult to determine the exact combination of parameters which
would provide an optimal result for that plugin, so it may not be a fair test. Moreover, our clients have now
provided a quantitative target to assess the outcome of the project. Specifically, they recommend setting 10%
as the error margin within which we should be satisfied with the accuracy of the plugin.

Figure 13a shows the linear regression plot for Simple Colocalization on all images. The translucent bands
depict the 10% error margin that we are aiming for. Four out of six counts lie within the desired error range,
but two outlier data points lie far outside the range which affects the fit greatly - namely (19.04.09, 2) and
(19.01.24, 2). From examining these specific inputs, we can see that they have an unusually high incidence of
axons and dendrites in the green layer that is not present in the rest of the images. These anomalous structures
should not be considered in the colocalization analysis as we are only interested in the transduction of retinal
ganglion cells. In our implementation, this is handled by using ridge detection to remove them (described in
the Pre-Processing: Anomaly Removal section). However, as a side-effect of this, any transduced cell that
coincides directly with one of them will also be removed. This explains the under-count yielded by the plugin
on these images. We can consider these images ‘edge-cases’, and the regression on a subset of images that
excludes these can be seen in Figure 13b. This is not to say that these do not need to be handled, but there
is value in comparing them to the general case performance.

With the removal of the edge-case images, repeating linear regression analysis gives significantly better performance,
with all points lying within the error range. Note also that in order for the regression line to always stay within
those bounds, the gradient must be 0.9 < x < 1.1, which it falls slightly outside of. So the (predicted) relative
accuracy will slowly deteriorate with the number of cells in the image.

Image Type Regression Standard Error p-value

All images y = 0.738x+ 4.765 0.149 0.00775
Non-edge case images y = 0.895x+ 2.049 0.048 0.00285

Table 2: Results of linear regression analysis for each image category

The other metric of interest is GFP intensity. We quantify this by taking the median pixel intensity of each
cell in the transduced channel. In theory, if the segmentation is perfect the GFP measurements will also be
perfect. Figure 14 shows the mean of the median GFP measurements for each image. The edge case images
show poor performance, as is to be expected as the segmentation and GFP are strongly related. (19.01.15,

2) is interesting however, as the counting performance was good but the automated intensity measurement
remains much higher than the manual measurement. If we look at the histogram of intensities, we can see that
the manual counts are more left-skewed, suggesting that the intensity filtering (described in Section 3.3.3) is
overly sensitive.
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Figure 13: Linear regression plots of manual counts vs. Simple Colocalization counts

The results of the time analysis are very similar to that of Simple Cell Counter, with the manual counting
taking several minutes for each image and the automated cell count finishing in under a second.

4.2 User Feedback

Along with software performance, user feedback forms a key component in a successful product development
cycle - even more so when building a product with such a niche use-case. During this project, we endeavoured
to continuously iterate upon user feedback, collected via regular emails, Skype calls, and an in-person visit to
Cambridge. This allowed us to be certain that we were fulfilling the project brief, as well as optimising specific
pain-points, ensuring the best possible experience for our clients.

Possibly the greatest change to the users’ workflow, and the feature they responded most positively to was
the batch processing feature. The ability to process hundreds of images at once is a huge benefit to anyone
performing these kind of analyses. As long as performance is consistent, there is potential here to increase the
productivity of many researchers. Similarly, the flexibility in output formats was well-received.

Users said that they liked the option to manually tune parameters. This was implemented as a way to provide
a high degree of customisability, without overwhelming first-time users, which was something we noticed many
ImageJ plugins are guilty of. It was pointed out that these parameters would benefit from explanation, and in
response to this we extended our documentation to accommodate this (Appendix A). To facilitate this feature,
we needed to provide sensible defaults that would work well straight ‘out of the box’. The client praised our
choice of values, saying that they worked well with minimal to no tuning required.

Something that we noticed from testing other third-party plugins available for ImageJ was that installation
was often tedious, requiring users to manually drag-and-drop JAR files into the appropriate installation folder.
To avoid this, we took advantage of the update site feature (Section 3.5) to streamline the process. Users
responded very positively to the ease of installation.

A major challenge when developing the plugin was working around limitations of the ImageJ software. For
instance, during initial testing users said they found the ImageJ table output confusing. This was due to the
fact that ImageJ provides very little flexibility when working with tables which resulted in outputs that could
be difficult to interpret. Moreover, columns do not automatically resize to fit their contents, causing text to be
difficult to read. Unfortunately, there was nothing we could do about this short of rewriting much of ImageJ’s
table functionality.
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Figure 14: Mean GFPs of manual vs. automated measurements

5 Conclusion

From our evaluation, we can see that the project achieves the quantitative requirements of the aims accurately,
with some edge cases in Aim 2, and meets the requirements of user experience and time improvements.

In Aim 1, we have created a plugin which default configuration parameters set such that our clients’ images
can be processed with: a significant increase in accuracy compared to human counts and existing plugins such
as ITCN; and a reduction of counting time from tens of minutes for a human and fifteen seconds for ITCN to
under a single second. At most one parameter needs to be configured in a normal use case leading to minimal
user interaction required, although a dialog window can be opened for further parameter tuning for different
use cases, described in the user guide (Appendix A.6).

In Aim 2, we have created a plugin consistent with the user interface, ease of use and configurability of Aim 1.
We have shown that this plugin produces accurate results within an expected margin of error for clients’ images
where axons do not cover cells; for those which have many axons, our plugin undercounts slightly, although we
propose methods of overcoming this in Future Work. We have also shown an improvement in time taken to
analyse an image from several minutes for a manual human count to under a second using our plugin.

Finally, we have created a plugin which meets our batch processing requirement, receiving positive feedback
from our clients.

In cases where results contain inaccuracies such as undercounts, our plugins are deterministic, hence our results
are reliable and reproducible, whereas manual human analyses are subjective and prone to inconsistency.

6 Ethical Considerations

We have undertaken our project in an ethical manner, with a brief analysis of our ethical considerations given
as follows.

We provide this plugin without warranty under the MIT License (Choose a License, 2020), which is justifiable
as we have taken our best effort to ensure accurate output, having quantitatively measured the accuracy of
our plugin against manual counts and other plugins (e.g. ITCN) used in industry, and having performed
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statistical evaluation to find that our plugin performs within the expected range of accuracy requested by our
clients.

There were also some ethical considerations to be made with regards to the image data sets we were provided
by the clients. These images are the property of the client so we were careful to not make these public on our
GitHub repository and obtained clear, written permission to safely store these images on our laptops. We were
also mindful that we used these images only for the purposes of improving the quality of our plugins.

We are aware that the ethics of gene therapy and animal testing for medical research are debatable, but
we believe this to be beyond the scope of the ethical considerations of our project. The animal research by
our clients has been regulated under the Animals (Scientific Procedures) Act 1986 Amendment Regulations
2012 following ethical review by the University of Cambridge Animal Welfare and Ethical Review Body
(AWERB).

7 Future Work

Further work can be undertaken in our project to improve the accuracy further of our plugins, both for our
client’s experiments on retinal ganglion cells and general use cases.

Firstly, further parameters can be investigated which could directly improve the accuracy of our current work.
One example which our clients suggested in their feedback is to remove erroneously selected small particles by
allowing the user to specify a smallest cell diameter parameter in both plugins.

For Simple Colocalization in particular, one method to improve its general accuracy is by calculating more
data points for use during colocalization analysis. For example, we can use algorithms which quantify the exact
amount of colocalization, Pearson’s Correlation Coefficient (PCC) and Mander’s Overlap Coefficient (MOC)
(Kenneth W. Dunn, 2011) in order to exclude some cells which colocalise weakly due to ambient fluorescence
but are still counted in are current plugin.

Additionally, Simple Colocalization could be improved to improve its accuracy when dealing with axons and
dendrites. One hypothesis is that a more advanced intensity filtering algorithm would be able to overcome the
overall increase in the image caused by bright axons and allow our plugin to detect cells underneath axons
better. In the worst case, our plugin could add output to clearly highlight areas with axons which were not
processed well for further consideration by the user.

Some more future work possible for this project stems from additional aims provided to us by the client; we
agreed with the client that our first two aims would be priority and these additional aims would be out-of-scope.
In this case, the plugin would be extended to detect a variety of different cell types for more general research.
For example, our clients described to us that in the future, their research they may move on to looking at how
their gene therapy affects astrocytes and microglia which do not have a circular shape. This would involve
extending the plugin to allow for the user to sample the shape(s) they are looking to detect.

Finally, in the future it would be possible to try an alternative approach to cell counting by using an artificial
neural network (ANN) (Weidi Xie, 2016). We can construct a set of ‘ground truth’ counts for images by asking
experts to count cells manually; this image set can be used to train the ANN. The approach using an ANN
can be used in more general cases than our current approach, as ANNs are not limited by the constraints of
thresholding and watershed algorithms, which rely on cells having clear borders and having a distinct colour
to the background. This is not a problem for the images for which we have designed our solution, as per the
client’s requirements; however, it could have limited effectiveness for other images.
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Appendices

A User Guide

A.1 Installation

The primary and recommended method of installing the plugin is via an update site: https://sites.imagej.
net/Sonjoonho/. The tutorial linked here (https://imagej.net/Following_an_update_site) describes how
to use an update site to add plugins to your installation of ImageJ or Fiji. You must have the Fiji and Java
8 update sites enabled in order for this plugin to work. In the Fiji distribution these should be enabled by
default, hence Fiji is the recommended ImageJ distribution to use.

Alternatively, the JAR can be compiled using Maven and installed in the jars/ directory under your ImageJ
installation. However, this requires manual installation of dependencies.

A.2 Overview

The plugins can be found in the ImageJ menu under Plugins −→ Simple Cells. The three plugins should
appear under a sub-menu as Simple Cell Counter, Simple Colocalization and Simple Batch.

Simple Cell Counter and Single Colocalization each process the current image in focus, hence it is required to
open the input image in ImageJ before opening the plugin. Results can either be displayed within ImageJ or
output to a single file.

In order to batch process a directory containing at least one image, the user may use the Simple Batch plugin
which allows them to run either the Simple Cell Counter or Simple Colocalization plugins on several
images in batch mode. Results will be output to a single file.

A.3 Simple Cell Counter

To run Simple Cell Counter, first ensure you have an image open and navigate to the ImageJ menu and select
Plugins −→ Simple Cells −→ Simple Cell Counter.

Simple Cell Counter identifies all the cells in an image, adding them to ImageJ’s ROI manager, hence you can
use this plugin to automatically mark cells for further analysis by choosing Display in ImageJ when selecting
the results output. If the input image has more than one channel, all channels will be taken into account
during processing. In order to select a specific channel, close the plugin, navigate to Image −→ Color −→ Split

Channels and bring the desired channel into focus before re-opening the plugin.

It is recommended to adjust the Largest Cell Diameter (px) parameter to match the diameter of the largest
cell in your image for the most accurate results. If results are not as expected, further parameter tuning will
be required (see the bottom of the user guide for advanced tuning of pre-processing parameters).

A.4 Simple Colocalization

To run Simple Colocalization, first ensure you have an image open and navigate to the ImageJ menu and select
Plugins −→ Simple Cells −→ Simple Colocalization.

Simple Colocalization identifies colocalization between multiple colour channels. Three channels are supported:
a first cell morphology channel, an optional, second cell morphology channel, and a transduction channel. The
plugin primarily identifies colocalization between the first cell morphology channel and the transduced channel,
analysing each colocalised cell and presenting cell intensity data from the transduction channel and (if displaying
results in ImageJ) adding the colocalised cells from the first cell morphology channel to the ROI manager for
further analysis. This allows the user to separately analyse the level of transduction on colocalised cells and
inspect which of the cells in the first morphology channel have been transduced.
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The user can optionally specify a second morphology channel, which could, for example, represent staining
of all cells irrespective of whether they are part of the first morphology channel or transduction. If this is
specified, the plugin will display the number of transduced cells in both morphology channels.

It is recommended to adjust the Largest Cell Diameter (px) parameters for each morphology channels in
use to match the diameter sof the largest cell in your image for the most accurate results. If results are not as
expected, further parameter tuning will be required (see the bottom of the user guide for advanced tuning of
pre-processing parameters).

A.5 Simple Batch

To run Simple Batch, navigate to the ImageJ menu and select Plugins−→ Simple Cells−→ Simple Batch.

Simple Batch allows Simple Cell Counter and Simple Colocalization to be run on a folder containing one or
files to be processed and outputs a set of results to a single file. If the file contains multiple series, each series
will be separately processed. If input images are organised into sub-folders, the plugin will be able to process
these nested images as well and explicitly display the image’s file path in the image’s associated output.

Note: if running Simple Colocalization, ensure that all images have the same channel ordering as the one
specified in the plugin options.

A.6 Advanced: Manual Tuning of Pre-processing Parameters

The below table describes the parameters that can be adjusted. ImageJ’s documentation, such its overview of
segmentation techniques (http://imagej.github.io/presentations/fiji-segmentation/), provides useful
context to the below parameters.

Parameter Type Explanation

Largest Cell Diameter (px) Number The approximate diameter of the largest cell in the
image. This helps distinguish cell from the image
during thresholding.

Subtract Background? Checkbox Background subtraction improves the accuracy of
the plugin when the input image has unevenly
illuminated backgrounds.

Threshold Locality Dropdown Choice between global and local thresholding
algorithms. Global is faster, but only works well
on images with a small variation in cell intensities.
Local is slower but more accurate.

Local Thresholding Algorithm Dropdown If local thresholding is selected, this gives a choice
between different algorithms. Defaults to Otsu’s
thresholding algorithm.

Despeckle? Checkbox Applies a median filter to remove noise and speckles
from the image.

Despeckle Radius (px) Number Determines the size of the neighbourhood for median
filtering. Higher means larger artefacts are removed.

Gaussian Blur? Checkbox Applies a Gaussian blur to remove small cell
artefacts and merge individual cells which have been
erroneously split apart during thresholding back
together.

Gaussian Blur Sigma (px) Number Radius of the Gaussian blur. Higher means
individual cells are less likely to become erroneously
split up, but overlapping cells are more likely to be
counted as one.
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B User Flows

B.1 Simple Cell Counter

Figure 15: Flow of Simple Cell Counter with output in ImageJ

Figure 16: Flow of Simple Cell Counter with saving result as CSV

Figure 17: Flow of Simple Cell Counter with manual parameter tuning and saving result as CSV
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B.2 Simple Colocalization

Figure 18: Flow of Simple Colocalization with output in ImageJ

Figure 19: Flow of Simple Colocalization with saving result as XML

Figure 20: Flow of Simple Colocalization with manual parameter tuning with output as XML
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B.3 Simple Batch

Figure 21: Flow of Simple Batch

VII



C UML Diagram

Figure 22: Simplified UML diagram of the class structure of the plugins

The dotted arrows indicate implementation and solid arrows indicate a ‘has a’ relationship. ImageJ provides
interfaces for the two possible types of plugin: Service and Command. Service plugins can be used to implement
internal functionality and can be used as utlity classes. Command plugins, however, are used for user interaction
in order to create some desired result. Hence, in our design, we have used service plugins to implement the
segmentation and colocalization processing. So, our command plugins use these services to process the images
input by the user and give the appropriate output.

In order to implement batch processing, we created a Batchable interface for the two batchable functionalities
of cell counting and colocalization. The Simple Batch plugin is the command plugin which the user interacts
with in order to choose which plugin they want to run in batch mode.
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D Investigation into Pre-Processing Parameters

D.1 Introduction

The aim of this investigation is to determine the level of abstraction of the parameters from the user, whether
they should be immediately available as the parameter is highly image-dependent, able to tweak via an
additional dialog (defaults are still efficient for most or all images) or whether they can be made into constants
that the user doesn’t need to see or change. We have identified a number of pre-processing parameters to find
optimal level of abstraction and/or for; these are as follows:

Parameter Explanation

Background Subtraction Radius
(px)

Background subtraction improves the accuracy of the plugin when
the input image has unevenly illuminated backgrounds. The
radius specified is the neighbourhood around a pixel which should
be considered when calculating the local background intensity
value.

Threshold Locality Choice between global and local thresholding algorithms. Global
is faster, but only works well on images with a small variation in
cell intensities. Local is slower but more accurate.

Thresholding Algorithm Our client reccomended the use of Otsu, Moments and Shanbhag
as candidate algorithms for global thresholding, and we identified
Otsu, Niblack and Bernsen as candidate algorithms for local
thresholding.

Local Thresholding Radius (px) If a local thresholding algorithm is specified, the radius specifies
the local neighbourhood over which a threshold should be
computed.

Despeckle Radius (px) Despeckling applies a median filter to remove noise and speckles
from the image. Radius determines the size of the neighbourhood
for median filtering. Higher means larger artefacts are removed.

Gaussian Blur Sigma (px) Applies a Gaussian blur to remove small cell artefacts and
merge individual cells which have been erroneously split apart
during thresholding back together. Sigma describes radius of the
Gaussian blur. Higher means individual cells are less likely to
become erroneously split up, but overlapping cells are more likely
to be counted as one.

This investigation is expected to give a range of potential values to use for each pre-processing parameter and
further qualitative experimentation will then be needed to settle on exact values.
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D.2 Methodology

We separately perform four variations of experiments (background subtraction, thresholding, despeckling and
gaussian blurring), each on nine images of NeuN stained brain tissue, compromising the first three series of
image sets 22.lif, 33.lif and 49.lif. We use the notation (Image Set, Series) when referring to these
image sets.

The independent variables for each experiment are identified as follows:

• Subtract background radius - background subtraction disabled, followed by radius values from 10px
to 60px in increments of 10px.

• Thresholding -

– Global thresholding with Otsu, Moments and Shanbhag.

– Local thresholding with Otsu, Bernsen and Niblack, each with thresholding radii of 15px, 30px and
45 px.

• Despeckling - despeckling (median filtering) disabled, followed by radius values of 1px, 2px, 3px, 5px
and 10px.

• Gaussian Blurring - gaussian blur disabled, followed by radius values of 1px, 2px, 3px, 5px and 10px.

For each of these independent variables, we fix a set of control variables (of course, excluding the independent
variable) obtained from prior qualitative experimentation on the combination of parameters which would
identify cells best: background subtraction is set to a radius of 30px; automatic thresholding form ImageJ’s
Auto Threshold plugin, based on the IsoData thresholding algorithm (Ridler and Calvard, n.d.); despeckling
with a median filter with radius 2.0px; gaussian blurring with a sigma radius value of 3.0px.

The method for each experiment is as follows:

1. Record the ground truth value for each image series’ cell count, taken from an average of six manual
human measurements.

2. For each radius/thresholding value, run Simple Cell Count and record the actual cell count.

3. Calculate and record the percentage error compared to the ground truth value.
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D.3 Results

D.3.1 Background Subtraction

Investigation of Background Subtraction Radius on 22.lif
Image Series

Series 001 Series 002 Series 003
Subtract 
Backround 
Radius (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 852

1103

22.76% 736

792

7.07% 869

998

12.93%
10 1583 -43.52% 1150 -45.20% 1446 -44.89%
20 1075 2.54% 830 -4.80% 1057 -5.91%
30 1022 7.34% 784 1.01% 1018 -2.00%
40 996 9.70% 770 2.78% 960 3.81%
50 967 12.33% 771 2.65% 946 5.21%
60 962 12.78% 768 3.03% 939 5.91%

Investigation of Background Subtraction Radius on 33.lif
Image Series

Series 001 Series 002 Series 003
Subtract 
Backround 
Radius (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 736

729

-0.96% 582

739

21.24% 566

536

-5.60%
10 1664 -128.26% 1149 -55.48% 1475 -175.19%
20 977 -34.02% 818 -10.69% 751 -40.11%
30 893 -22.50% 780 -5.55% 692 -29.10%
40 865 -18.66% 738 0.14% 686 -27.99%
50 843 -15.64% 735 0.54% 654 -22.01%
60 798 -9.47% 733 0.81% 648 -20.90%

Investigation of Background Subtraction Radius on 49.lif
Image Series

Series 001 Series 002 Series 003
Subtract 
Backround 
Radius (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 660

840

35.10% 591

662

10.73% 932

1017

8.36%
10 1616 -58.90% 996 -50.45% 1421 -39.72%
20 881 13.37% 674 -1.81% 1077 -5.90%
30 832 18.19% 641 3.17% 1032 -1.47%
40 785 22.81% 635 4.08% 1003 1.38%
50 789 22.42% 621 6.19% 1020 -0.29%
60 760 25.27% 628 5.14% 999 1.77%

Figure 23: Investigation into parameters for background subtraction
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D.3.2 Thresholding

Investigation of Thresholding Radius and Type on 22.lif
Image Series

Series 001 Series 002 Series 003

Threshold 
Locality

Threshold 
Type

Threshold 
Radius (px) Actual Cell Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Global
Otsu

N/A (Global)
1022

1103

7.34% 779

792

1.64% 1014

998

-1.60%
Moments 1022 7.34% 779 1.64% 1014 -1.60%
Shanbhag 1022 7.34% 779 1.64% 1014 -1.60%

Local

Otsu
15 1714 -55.39% 1326 -67.42% 1399 -40.18%
30 1106 -0.27% 820 -3.54% 979 1.90%
45 1034 6.26% 783 1.14% 905 9.32%

Bernsen
15 1395 -26.47% 1011 -27.65% 1231 -23.35%
30 952 13.69% 739 6.69% 924 7.41%
45 744 32.55% 629 20.58% 776 22.24%

Niblack
15 1974 -78.97% 1531 -93.31% 1565 -56.81%
30 1199 -8.70% 878 -10.86% 1052 -5.41%
45 1103 0.00% 798 -0.76% 931 6.71%

Investigation of Thresholding Radius and Type on 33.lif
Image Series

Series 001 Series 002 Series 003

Threshold 
Locality

Threshold 
Type

Threshold 
Radius (px) Actual Cell Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Global
Otsu

N/A (Global)
892

729

-22.36% 781

739

-5.68% 682

536

-27.24%
Moments 892 -22.36% 781 -5.68% 682 -27.24%
Shanbhag 892 -22.36% 781 -5.68% 682 -27.24%

Local

Otsu
15 1834 -151.58% 1431 -93.64% 1661 -209.89%
30 952 -30.59% 894 -20.97% 837 -56.16%
45 871 -19.48% 793 -7.31% 709 -32.28%

Bernsen
15 1219 -67.22% 1203 -62.79% 1055 -96.83%
30 872 -19.62% 847 -14.61% 724 -35.07%
45 666 8.64% 713 3.52% 596 -11.19%

Niblack
15 1830 -151.03% 1663 -125.03% 1877 -250.19%
30 1063 -45.82% 985 -33.29% 967 -80.41%
45 936 -28.40% 855 -15.70% 770 -43.66%

Investigation of Thresholding Radius and Type on 49.lif
Image Series

Series 001 Series 002 Series 003

Threshold 
Locality

Threshold 
Type

Threshold 
Radius (px) Actual Cell Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Global
Otsu

N/A (Global)
820

840

2.38% 635

662

4.08% 1026

1017

-0.88%
Moments 820 2.38% 635 4.08% 1026 -0.88%
Shanbhag 820 2.38% 635 4.08% 1026 -0.88%

Local

Otsu
15 1422 -69.29% 1411 -113.14% 1391 -36.77%
30 901 -7.26% 742 -12.08% 1087 -6.88%
45 836 0.48% 646 2.42% 1006 1.08%

Bernsen
15 1159 -37.98% 867 -30.97% 1068 -5.01%
30 830 1.19% 632 4.53% 603 40.71%
45 684 18.57% 539 18.58% 349 65.68%

Niblack
15 1632 -94.29% 1638 -147.43% 1581 -55.46%
30 998 -18.81% 814 -22.96% 1125 -10.62%
45 861 -2.50% 679 -2.57% 1044 -2.65%

Figure 24: Investigation into parameters for thresholding

XII



D.3.3 Despeckling

Investigation of Despeckle Radius on 22.lif
Image Series

Series 001 Series 002 Series 003

Despeckle 
radius (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 1017

1103

7.80% 791

792

0.13% 1018

998

-2.00%
1 1022 7.34% 784 1.01% 1018 -2.00%
2 986 10.61% 774 2.27% 1008 -1.00%
3 955 13.42% 757 4.42% 977 2.10%
5 858 22.21% 698 11.87% 891 10.72%

10 583 47.14% 555 29.92% 651 34.77%

Investigation of Despeckle Radius on 33.lif
Image Series

Series 001 Series 002 Series 003

Despeckle 
radius (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 909

729

-24.69% 793

739

-7.31% 706

536

-31.72%
1 893 -22.50% 780 -5.55% 692 -29.10%
2 874 -19.89% 770 -4.19% 663 -23.69%
3 839 -15.09% 738 0.14% 639 -19.22%
5 728 0.14% 672 9.07% 565 -5.41%

10 498 31.69% 460 37.75% 407 24.07%

Investigation of Despeckle Radius on 49.lif
Image Series

Series 001 Series 002 Series 003

Despeckle 
radius (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 840

840

0.00% 645

662

2.57% 1042

1017

-2.46%
1 832 0.95% 641 3.17% 1032 -1.47%
2 816 2.86% 631 4.68% 1017 0.00%
3 791 5.83% 625 5.59% 996 2.06%
5 718 14.52% 598 9.67% 932 8.36%

10 531 36.79% 468 29.31% 661 35.00%

Figure 25: Investigation into parameters for despeckling
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D.3.4 Gaussian Blurring

Investigation of Gaussian Blur Sigma on 22.lif
Image Series

Series 001 Series 002 Series 003

Gaussian Blur 
Sigma (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 1721

1103

-56.03% 1109

792

-40.03% 1345

998

-34.77%
1 1559 -41.34% 1036 -30.81% 1262 -26.45%
2 1209 -9.61% 869 -9.72% 1116 -11.82%
3 1002 9.16% 779 1.64% 1014 -1.60%
5 759 31.19% 650 17.93% 813 18.54%

10 362 67.18% 392 50.51% 431 56.81%

Investigation of Gaussian Blur Sigma on 33.lif
Image Series

Series 001 Series 002 Series 003

Gaussian Blur 
Sigma (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 1835

729

-151.71% 1268

739

-71.58% 1359

536

-153.54%
1 1581 -113.85% 1156 -56.43% 1173 -118.84%
2 1120 -65.84% 903 -22.19% 853 -59.14%
3 892 -37.45% 781 -5.68% 682 -27.24%
5 647 -4.12% 587 20.57% 519 3.17%

10 325 50.34% 319 56.83% 297 44.59%

Investigation of Gaussian Blur Sigma on 49.lif
Image Series

Series 001 Series 002 Series 003

Gaussian Blur 
Sigma (px)

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Actual Cell 
Count

Expected 
(Manual) Cell 
Count % Error

Disabled 1631

840

-94.17% 934

662

-41.09% 1598

1017

-57.13%
1 1387 -65.12% 850 -28.40% 1431 -40.71%
2 993 -18.21% 715 -8.01% 1150 -13.08%
3 820 2.38% 635 4.08% 1026 -0.88%
5 663 21.07% 541 18.28% 846 16.81%

10 353 57.98% 331 50.00% 415 59.19%

Figure 26: Investigation into parameters for gaussian blurring
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D.4 Conclusion

From the above results, we have made the following observations:

• One of the most useful observations was that the radius for background subtraction and local thresholding
both followed a very similar correlation. Following some research into the algorithms for both methods,
it became clear that they both implement a form of the ’rolling ball’ algorithm discussed in 3.2.4. This
means that both values can be represented using a single largest cell diameter parameter.

• In all images, setting the background subtraction radius to a low value (lower than 20px) causes
large percentage errors. There are two instances where percentage error is most reduced in many (but
not all) images: turning background subtraction off leads to low percentage error for all images except
for (22, 1), (33, 2) and (49, 1); and a value of 30px is associated with one of the lower percentage errors
compared to other values in all images except for (33, 1). Setting the radius at a value of 30px or higher
leads fairly consistent percentage errors for all images.

• In global thresholding, the choice of algorithm does not change the cell count. Hence, the most
accurate and fastest global thresholding algorithm would be appropriate if global thresholding is used
(With accuracy taking precedence over speed).

• With local thresholding, we find that using Bernsen leads to poor segmentation, with no correlation
between radius and percentage error (hence the accuracy simply depends on the image). Niblack and
Otsu have the lowest percentage error with the larger radius of 45px; Niblack yields marginally better
results and Otsu is much slower to run for larger radii, hence Niblack is preferred.

• The percentage error between global thresholding and local thresholding with Niblack at a 45px radius
is similar in most images, although there are cases where the global thresholding algorithm noticeably
performs better ((33, 2) and (33, 3)).

• In all images, larger despeckling radii lead to large percentage errors. In some images (e.g. (22, 2), (49,
2)), the percentage error is lowest when despeckling is off and gently increases with radius; in others (e.g.
(33, 1), (33, 2), (49, 3)), the error reduces as the despeckling radius is increased to the 2-5px range, then
greatly increases after. A despeckling radius of 1-2px leads to consistently low percentage errors across
all images.

• In all images, the percentage error is greatest when gaussian blurring is disabled. Error decreases as
the sigma value is increased to 3-5px, then increases largely as the sigma value is increased past 5px.

With the above observations, we settle on the following parameters:

1. Largest Cell Diameter - This could not be abstracted to have a default value as it is highly dependent
upon the image (as different images may have different sized cells). Therefore it is necessary to ask the
user to specify this parameter upon each run of the plugin.

2. Background Subtraction - None. We discovered that the local thresholding algorithms performed
the same ’rolling ball’ method to take into account varied background intensity and thus this was only
required in unison with a global thresholding algorithm.

3. Thresholding - Local thresholding with Otsu’s algorithm. Our main reasoning behind this was that
this method allowed for the most accurate segmentation which was vital for both aims. Additionally, the
percentage errors across thee board were relatively low for this.

4. Despeckling - Median filtering with a radius of 1.0px. Increasing the radius to much larger than 2px
removed morphologies that could be large enough to be interpreted as a cell. Setting to this value
decreases percentage error and ikelihood of

5. Gaussian Blurring - Sigma valuel set to 3.0px. We identified this as the ideal value to ensure that we
don’t blur together overlapping cells but also that we merge separate segments of a single cell together to
be identified as just one cell. Further investigations may be required to determine if this value is related
to the largest cell diameter parameter
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